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The effect of non-linearities on statistical distributions 
in the theory of sea waves 
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The statistical density function is derived for a variable (such as the surface 
elevation in a random sea) that is ‘weakly non-linear ’. In  the first approximation 
the distribution is Gaussian, as is well known. In  higher approximations it is 
shown that the distribution is given by successive sums of a Gram-Charlier 
series; not quite in the form that has sometimes been used as an empirical fit 
for observed distributions, but in a modified form due to Edgeworth. 

It is shown that the cumulants of the distribution are much simpler to calculate 
than the corresponding moments; and the approximate distributions are in fact 
derived by inversion of the cumulant-generating function. 

The theory is applied to random surface waves on water. The third cumulant 
and hence the skewness of the distribution of surface elevation is evaluated 
explicitly in terms of the directional energy spectrum. It is shown that the 
skewness A3 is generally positive, and positive upper and lower bounds for A, 
are derived. The theoretical results are compared with some measurements made 
by Kinsman (1960). 

It is found that for free, undamped surface waves the skewness of the dis- 
tribution of surface slopes is of a higher order than the skewness of the surface 
elevation. Hence the observed skewness of the slopes may be a sensitive indicator 
of energy transfer and dissipation within the water. 

~~ 

1. Introduction 
It is well known that in the linear theory of wind-generated water waves, in 

which squares and higher powers of the surface displacement are neglected, the 
statistical distribution of the surface elevation and its derivatives is Gaussian, 
under quite general conditions. Moreover, the Gaussian distribution of the 
surface elevation and bottom pressure has been fairly well verified in some cir- 
cumstances (see, for example, Rudnick 1950; Barber 1950; Pierson 1955; MacKay 
1959). Quite early, however, Birkhoff & Kotik (1952) pointed out significant 
departures from the Gaussian distribution for waves in shallow water. Similar, 
though less pronounced, effects for waves in deep water were found by Burling 
(1955) and Kinsman (1960). 

The distribution of surface slopes was shown by Cox & Munk (1956) to have 
an appreciable skewness in the direction of the wind; and surface curvatures in 
wind-generated waves may be even more radically non-Gaussian (Schooley 
1955). 
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Several theoretical investigations have lately been made into the dynamical 
effects which non-linearities produce in the quadratic spectrum of the sea surface 
(Tick 1959, 1961; Phillips 1960, 1961; Hasselmann 1960, 1961, 1962). However, 
the effect of such non-linearities on the statistical distributions has received less 
attention. Phillips (1961) has pointed out that the surface elevation must in 
fact have a coefficient of skewness of the same order of magnitude as the surface 
slope; but the higher moments of the distribution have not been calculated, nor 
has the complete distribution been derived. 

Some authors (Cox & Munk 1956; Kinsman 1960) have fitted the observed 
distributions of surface slope or elevation by means of a Gram-Charlier series, 
with apparently no justification beyond the fact that any function that is 
sufficiently well-behaved can be expanded in such a series. The coefficients of 
successive terms are related to the moments of the function itself. 

In  the present paper we derive the theoretical distribution of quantities (such 
as the surface elevation or surface slope) which can be described as ‘weakly non- 
linear’, that is to say the ordinary representation as the sum of independent 
random components is valid to a first approximation, but quadratic and higher- 
order interactions between the components cannot be entirely neglected. At each 
stage the calculation is carried uniformly to a certain power of the component 
amplitudes. 

As one would expect, the first approximation corresponds to the ordinary 
Gaussian distribution. It is found that higher approximations are described by 
the Gaussian law multiplied by certain polynomials. These expressions corre- 
spond in fact to successive terms in a Gram-Charlier series; not, however, in the 
form that has been commonly used for fitting the distributions, but in a modified 
form due to Edgeworth (1906a, b, c). For example, in the second approximation 
a cubic polynomial occurs, but in the third approximation one must include a 
quartic polynomial plus another of degree six. 

Roughly the method is as follows: from the dynamical equations it is possible 
to calculate successively higher moments of the statistical variable. It turns out 
that certain combinations of the moments, namely, the cumulants, are simpler 
to calculate, and just as convenient to handle, as the moments themselves. By 
calculating the cumulant-generating function to a certain order and taking the 
Fourier transform one obtains the desired approximation to the distribution 
function. 

The analysis is essentially similar to Edgeworth’s (1906) generalization of the 
Gaussian ‘law of error’ for a single variable, but is presented here in a rather 
different form and is moreover extended to two or more dependent variabIes. 

The device of truncating the cumulant-generating function has been used in 
the analytical theory of turbulence (see, for example, O’Brien & Francis 1962) 
but not, so far as the author is aware, for the specific purpose of calculating pro- 
bability densities. Hence some of the results of the present study may be applic- 
able also to turbulent fluctuations. 

The basic analysis for a single non-linear variable is given in Q 2 .  This is then 
applied, in Q 3, to the distribution of surface elevation in a random sea. In  Q 4 
the results are compared with recent observations made by Kinsman (1960). 
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The next three sections follow a similar scheme: the joint distribution of two 
related non-linear variables is derived in 9 5 ;  this is applied to the joint distribu- 
tion of surface slopes in$6, and in§ 7 the well-known observations of Cox & Munk 
(1956) are discussed. The conclusions are restated in 9 8. 

2. A single non-linear variable 

elevation 5 can be expressed in the form 
As will be shown in 3 3, the linear spectral representation of the sea surface 

where the ai are constants and the ti are independent random variables sym- 
metrically distributed about 0 with variance K, say. The convergence of p(6 )  
to a Gaussian distribution, with variance ZK, is a case of t,he so-called ‘law of 
large numbers’. 

In  the more exact non-linear theory, in order to satisfy the dynamical equations 
for 6, quadratic and higher-order terms must be added to 6. Let us then consider, 
in a general way, the distribution of the variable 

6 = a i i~+a . i j~ i5+ai j k~ i ; i j~k+ ..., (2.1) 
where ai, aij, aijk, etc., are constants, and the summation convention is used. 
Thus in (2.1) each product is summed over all repeated suffices, from 1 to N .  
With each value of i is associated a vector ui (the wavenumber). Later, we shall 
make N + co and each + 0 in such a way that over any small but fixed region dw 

2 q + F(u) d u  + O(dU)2. 
U3dU 

The first few moments of 6 ca,n be written down by inspection. Thus taking 
mean values in (2.1) one has 

A11 mean values of odd-order terms vanish, while among the terms of even order 
only those remain in which each ti is paired with a similar &. Thus* 

(2.3) 

(It is assumed that the a are symmetric in their suffices so that, for example, 
aijij = aijji = aiijj.) There are, in general, terms involving M, cz, etc.; these 
become negligible on passing to the limit as N -+ co, and so will be ignored. 

= aii 5 + 3aiijj K 6 + . . . . 
- _  

In  a similar way, by squaring both sides of (2.1) one has 

c2 = @ , 5 i + % j t i k - j +  ... ) (aktk+a,5k&+ ...I 
and on taking mean values 

- 
c2 = aiai + ( 2aij aji + aiiajj) K q  + 6ai aiji q 4 + . . . . (2.4) 

The higher moments may be calculated similarly, but a direct approach leads to 
complications. We shall show how these can be circumvented. 

* The usual summation convention is extended to three repeated indices. 
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It will be noticed that some of the terms in (2.4) and in higher moments can 
be factorized* 

aiiajjKF = (.$iE) (aj&, 

but other terms, e.g. aijaji&c cannot. The latter terms may be called 'irre- 
ducible ', and it will be convenient to introduce an abbreviated notation for them. 
Thus let aij .,.z be denoted shortly by A,, where r is the number of suffices i, j . . . I ;  
and let the sum of all the irreducible terms in the mean product 

be denoted simply by 
(ADAQ ...As). 

Clearly when ( p  + q + . . . + s )  is odd, the above expression vanishes. Also 

(A?) = aiai5,  (4) = U i i K ,  ( 2 . 5 )  

(2.6) 
(A;") = 0 (n 3 4), 

(A2,A,) = 2a,ajaijx13, 

(A;)  = 2aijajiq5, I (A1A3) = 3aiaijjK5, 

(A4) = 3aiijjqJ5, 

(A2,Ai) = 8aiajaikajkKqK, 

(A2,A4) = 12aiajaijkkK5G, 

(A13A3) = 6aiajakaij,&4.V,, 

(A1A5) = lSai; j jkkK4.V,,  I ( A I A z A J  = ( 6 ~ r i ~ ~ i j ~ ~ j k k  + G c ~ i ~ ~ j k ~ ~ i j k )  V,yV,, (A:) = S ~ ~ i j a j k a k i K y V , ,  (2 .7)  

(A:) = (9aijjaiklc+ 6 ~ 1 i j k a i j k )  xl$ V,, (AZA4) = 1 2 ~ ~ i j ~ ~ i j k k K J $ . V , ,  

(A6)  = ~ ~ c c ~ ~ ~ ~ ~ ~ ~ & T $ G .  

The first few moments can now be written shortly as 

(2.8) i 5 = c (AP), 
C3 = 

F = c [ ( A P 4 J  + (A,) ( 4 1 >  
P P, 9 

- 

2 [(A, AqAr) +3(ApA,) (A,) + (AD) (A,) ( 4 ) I 7  

P, 9. 

etc., where the summations are over all positive integral values of p ,  q, r (in- 
cluding equal values). Generally, 

- cx = C [C(n) w(n) +C(n- 1 , l ) a ( n -  1,l) + ...I, (2.!1) 
P ,  Q, ..., s 

where w( i ,  j, ..., I) denotes some grouping of A,, A,, ..., A,  into unorderedt sets 
containing i, j ,  .. ., 1 members, and C ( i , j ,  ..., Z) denotes the number of ways of 
choosing such sets. If r denotes the number of sets in m we have 

1 n! 
C(i , j ,  ..., Z) = - -__ 

r! i ! j !  ... I!' (2.10) 

* The factorization of any given product can be shown to be unique. 
f Both the sets and the members of each set are unordered. Each m is considered as 

distinct from the rest. 
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= pn, the nth moment of the distribution. It turns 
out, however, that the curnulants of the distribution are much simpler. Whereas 
the moments correspond to the coefficients of (it)" in the function 

We have thus calculated 

P P2 

l!  2!  
= 1 + 2 ( i t )  + (it)2+ ...) 

the cumulants, by definition, correspond to the coefficients of (it)" in 

K( i t )  = log$(it) 

K1 K 

I! 2!  
= - (  i t ) + q i t ) 2 +  .... 

On equating coefficients of (it)" in (2.12) one has 

K~ = ,ul, K~ = p2 -p?, K~ = ,u3 - 3cc1,u2 + 314, 

etc., and so on substitution from (2.8) we have 

K 1 =  c (Ap) ,  K2 = z (ADA,)> k'3 = s (A,A,A,), 

K, = c ( A  pAq...As). 

P P ,  P P, q, r 

etc. This suggests the relation 

P,,, ... ,s  

To prove this, we note that since 

one has, on equating coefficients of (it)'l in this expression, 

K i K j  . . . K! c n! 
P n =  X I ,  

r=l  r .  2+1+.. .+z=n i ! j !  ... I !  
m .- 

= c(i7j7 ...) I ) K i K j  ... Kl, 
r=l i+j+ ...+ Z=n 

(2.1 1 )  

(3.12) 

(2.13) 

(2.14) 

(2.15) 

where C(i , j ,  ..., 1 )  is given by (3.20). Therefore the equations for ,uTb in terms of 
the K,  are formally identical with the equations for pn in terms of S(AP A, . . . .As). 
Since p1 = X(AP) the general result (2.13) follows by induction. 

Retaining all terms up to the sixth order in the ti (i.e. third order in q)  we have 
from (2.13) 

(3.16) 1 K l  = (4 + (A4) + (4, 
~2 = (At)  + (A:) + (A:) + 2(A1A3) + 3(AlA,) + Z(AgA4), 

~3 = (A;) + 3(AFA2) + 3(A:A4) + 6(AlA,A3), 
K~ = (A:) + 4(A:A3) + G(A2,Ai). 

From (2.16) it is seen that K~ and K~ are both of order V ,  in general. However, 
when n 2 3 the lowest non-vanishing term in K, is n(AT-lA,-l), which is O( T',-l). 
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The coefficients of skewness and of kurtosis will be defined by 

h, = K,/Kt, h, = K4,/Ki, (2.17) 

which are of order J7* and V ,  respectively. More generally, 

h, = K,/Ktn = O(V*,-'). (2.18) 

The density of 6 
Now provided that the probability density p(6)  is uniquely determined by its 
moments, p(6)  can be obtained directly from (2.8) by inverting the Fourier 
transform : 

l m  m 

#(it) ecit<dt = p(6)  = 271. 1 exp [K(it) - itc]ddt 
2n 

exp [ ( K ~  - 6) it+ +c2(it)2 + &,(it), + . . .] dt. 

Substituting t = S/Kk, (<-KI) = f K i ,  
we have 

exp [ - -k(s2 + 2ifs)  + Q h , ( i ~ ) ~  + &&(is)* + . . . I  ds, 

where A,, as we have seen, is O(Y*n-l). The second group of terms under the 
exponential can now be expanded in powers of V*, giving 

1 "  
P(6 )  = ~ 

exp [ - &(s2 + Zifs)] [ I  + @,(is), + {+zh,(is)4 + &hi(is)6} + . . .] ds. 
27TK$!-Y 

But we have identically 

where H, denotes the Hermite polynomial of degree n : 

n ( n - 1 )  f n - 2  n ( n - l ) ( n - 2 ) ( n - 3 )  f n - ,  
.- (2.19) _____ 

2 !  2 2  .... + 
l! 2 

H, = f n -  

Hence we have 

p(6) = (2n~, ) -+e-$f~  [I + ~ h , ~ , + ( ~ h , ~ ~ + ~ ~ h i ~ ~ ) +  . . . I .  (2.20) 

(2.21) 

From (2.19) 

} 
H3 = f 3 - 3 f ,  

H5 = f 5 - 1 0 f 3 + 1 5 f ,  H6 = f6-15f4+45f2-15. 

H4 = f4-6f2f3 ,  

Equation (2.20) is the distribution sought. It corresponds quite closely to Edge- 
worth's form of the type A Gram-Charlier series (Kendall & Stuart 1958, $6.18). 

In a first approximation, h3 and h4 can be neglected and we take 

K 2  = (A:) = CCiCCiq. 
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Thus (p($ + e - 4 f Z / ( 2 m 2 ) h ,  f = <I&. (2.22) 

This is the well-known Gaussian law. 

To the same approximation 
In the next approximation A, is taken into account, but A: and A, are neglected. 

K1 = (A2)  = a,(%, 

K, = 3(A:A2) = 6aiajakJ$X, 

K2 = (A:) = CXiCCix,} 

K, = 0,  (n 2 4), 
(2.23) 

and so 
where f = 04 - K l l K !  (2.25) 

and A, = ~ O ~ , C C ~ C X ~ ~ ~ ~ / ( K ~ O I ~ ~ ) ~ .  (2.26) 

Thus the mean value of 5 is shifted by an amount aiix and the density is multi- 

(2.27) 
plied by the factor 

which introduces a skewness A,. The kurtosis is zero, as are all the higher 
cumulants. 

In the next approximation, the distribution is given by the full equation (2.20). 
The mean K ~ ,  variance K~ and skewness A, are all slightly modified, and a non-zero 
kurtosis A, appears, given by K 4 / K i ,  where 

K~ i 4(A:A,) + 6(A:A3 

p ( < )  + (271~~)-3 e-*f2 [I + &h3(f3- 3f)], (2.24) 

[ I +  v3v3 - 3.m 

= 24ai 0 1 ~  ak a i j k 6  5 V, + 48a, aj a i k j k 6  4 5. (2.28) 

3. Application to gravity waves 
Consider a random, homogeneous surface displacement on water of infinite 

depth. To a first approximation such a surface may be represented in the form 
z = Q1) where 

hT’ 

n = l  
C;@) = C a,cos$,, $, = (kV.x-u,t+8,), (3.1) 

where x is the horizontal Cartesian co-ordinate, t the time, k, a horizontal vector 
wave-number, u, the frequency, related to k, by 

4 = 9 lknl = gk, 
(where g is the acceleration of graTity). a, and en are amplitude and phase 
constants, chosen randomly so that a, cos 8, and a, sin On are jointly normal, 
with 0, uniformly distributed and 

- 

+a: + E(k)dk. 
k,3dk 

Let a,cos8, = g,, ansin@, = ti; ( 3 4  
1V’ 

n=l 
then we have <(l) = C [t, cos (k. x - crt) + 6; sin (k . x - d)],  

which, if we write gW+% = g, is of the form 
2N’ 

i=l 
<(I) = O&, 

30 Fluid Mech. 17 



466 M .  S.  Longuet-Higgins 

the CI. being constants for a fixed position and time. Also 
- __ 
g = 3.; (i = 1, ..., 2"). 

By the assumption of homogeneity we may consider the distribution of [(l) at 
the special point x = 0 and time t = 0 ;  hence we may take 

(3.3) I 1 (i = 1, ...,"), 
mi = { 

0 (i = "+ 1, ...) 2"). 

We can now make (3.3) correspond to the Linear part of (2.1) by setting N = 2N' 
and u, = ki, uN+i = ki (i = 1, .. ., N') .  Moreover 

- 
Z z  = = E(k)du (3.4) 
du du 

ineachrangei= 1 ,... , N ' , i = N ' + l , . . . ,  2". Socomparedwith(2.2)wehave 

F(u) = E ( k )  
in each range also. 

Corresponding to the free surface elevation g(l) is a velocity potential 

#(l) = Cb,ekiZsin$i (bi = alei/&). 
i 

However, {(l) and $(l) are only first approximations. To satisfy the boundary 
conditions a t  the free surface to higher order one must add further terms in the 
series 

in which <t2), $(2) contain terms proportional to the squares of the amplitudes; 
c(3), #3) contain terms proportional to the cubes of the amplitudes, and so on. 
The equations for #2) and gc2) are 

I 

and 

It is assumed that the mean level GF) is zero. Substituting for $A1) in the third of 
equations (3.5) we have 

(g + g &) $:?& = - C bi bj[(ci - aj) (ki . kj + ki k j )  sin ($< - @j) 

+ ( ci + ci) ( ki . kj - ki k j )  sin ($< + $ j ) ]  

i, j 

and so 
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Inserting this in (3.6) and substituting for bi, b, and vi7 vj we find 

Hence to a second approximation we have ‘= p i t i + C % j t i t - j ,  
z i,i 

where aij is given by (3.3) and 

I (Ic,Icj)-*(B,_j+B~i+k,.kj+(Ic,+Icj) (kiIcj)*} when i , j  = 1, ..., N’,  

ai5 = (k,k,)-* (B,j-Btj-kiIcj) when i , j = N ’ + l ,  ..., 2N’, 

0 otherwise. 
(3.9) 

i 
The diagonal terms aii are given as the limit of the above expressions as k j  -+ ki. 
Then Bij and B& both vanish and 

Ic, (i = 1, . . .7  N’), 

-k, (i = N ’ + l  7 . . . , 2 N ’ ) .  
aii = 

Taking account of (3.3) we have then 

(3.10) 

The first equation simply states that the mean surface level is zero, to second 
order, as was specified. The next two equations, in integral form, can be written 

K~ t / p ( k )  dk, K~ = 6 / / / k ( k ,  k’)  E(k)  E(k’) d k d k ,  (3.11) 

where 
(Jk-Jk‘)’(k.k’+kk’)  (dk+2/k1)’(k.k-kk’)  ____-- K ( k ,  k’) = ~ -+- ( J k - d k ‘ ) ’ -  Ik-k‘l (Jk+Jk‘ ) ’ -  Ik+k‘l 

- k .  k’ + ( I c  + Ic’) (kk’)* . (3.12) 

30-2 
1 
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If we take polar co-ordinates (k, 0) in the k-plane and introduce the directional 
spectrum $’(a7 0) by 

F(u, 0) dgd0 = E(k) dk = E(k) kdkd0  

so that 
dk k2 

d a  2a 
F(tr,0) = k-E(k) = -E(k), 

then we have 

K~ = /k(a, 0) d a d o ,  K~ = 6 K(k, k )  F ( a ,  0) $‘(a’, 0’) dada’dOd8’. 

(3.13) 

In the one-dimensional case when $’(a, 0) vanishes everywhere except when 
B = 0 the above expressions simplify very considerably. For when k‘ is parallel 
(or anti-parallel) to k we find 

K(k, k’) = min (k, k’) 
and hence 

K2 = k(n) da, K~ = 6 min (k, k‘) $’(a) $’(a’) dada’, (3.14) 

where F ( u )  = IF(., 0)dO denotes the spectral density with regard to frequency. 
The above expression for K~ may be written 

ssss 

ss 
n n  

= 12 / o ~ , [ ~ o u ’ k F ( a )  da] $’(a’) da’, 

where k = a2/g. 

(3.15) 

(3.16) 

Let us examine the form of K(k, k‘) in the general case, when the angle between 
k and k‘ is equal to y ,  say. Writing 

(k + k’)/Z(kk’)* = q 2- 1 

(by Schwarz’s inequality) we find from (3.12) that 

K(k, k’) = (kk’ )%f(q ,  y) ,  (3.17) 

and c = cosy. It can be shown that f ( q , y )  is non-negative. For from (3.18) 

Z ( q  - 1) (1 + c )  [(q - 1) + (q2 - + - &)*I 
- (4q-c-3)  

~~ f ( % Y )  = 

- 2(r  + 1) (1 -4 [(7 + 1) + (r2 - 4 + H*I + (Zq - c ) ,  
(4q - c + 3) 

Since all the factors in eachexpression are non-negative, the two radicals may be 
replaced by ( q 2 ) *  = q without diminishing the right-hand side. After some 
reduction we then find 

(3.19) 

It follows that K(k, k’) is non-negative, and that so also is K ~ ,  in the general case. 
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The form of f ( 7 ,  y )  can be seen from the curves in figure 1. The two extreme 

(3.20) values are equal: f (790) = f ( r ,  4 = 7 - (r2 - 1)4  
7 = 1.001 
' I  

0.01 

- - 

I I I I I I I I ' 

and for fixed values of 7 there is a minimum, at  about 7 = 90". However, the 
curves are not symmetrical about the mid-point of the range of 7. For example, 
f (  1, y )  has a stationary point at y = 0 but not at y = 7 ~ .  Further, though it appears 
at first sight that f (7, y )  never exceeds f(r,O), in fact f (7 ,  y )  is an increasing 
function of y when y is small and 7 is very close to 1. A numerical investigation 
shows that 

0.44f(l, 0) 6 f ( r ,  y )  < 1.0lf(7, 0) (3.21) 

over all values of y ,  From (3.13) and (3.17) it  then follows that in general 

0.441 6 K, < 0.011, (3.22) 

where I denotes the integral on the right-hand side of (3.15) or (3.16). Further, 

writing L = I ~ K ; ,  (3.23) 

we deduce the following theoretical bounds for the skewness : 

0.44L 6 h, 6 1.01L. (3.24) 
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In  the two-dimensional case we have always 

A, = L. (3.25) 

It will be seen from (2.28) that the next cumulant K, generally involves the 
third- and fourth-order terms aijk and aikik. These can be calculated in a similar 
way. In  general, however, they will be weakly dependent on the time t ,  owing 
to resonant interactions between the wave components Ei (cf. Phillips 1960; 
Hasselmann 1960). Moreover aijk, for example, will generally be of the same order 
as min (k;, k;, k i ) .  Hence the convergence of the corresponding integrals will 
depend rather critically on the behaviour of the spectral density E ( k )  at high 
wave-numbers. We shall not calculate the higher-order moments here, beyond 
remarking that according to the present analysis K, and A, are proportional to 
(E(k)}2 and {E(k) ) ,  respectively. Hence if the integrals substantially converged 
over the region in which viscous damping was negligible then A, would be of 
the same order as A:. 

4. Comparison with observation 
An extensive study of the power spectra of water waves over short fetches, and 

of the corresponding statistical distribution of surface elevation, has been made 
by Kinsman (1960). In  the second column of table 1 are shown Kinsman's 
observed values of K ~ ,  and in the third column the value calculated from the 
power spectra" using equation (3.11). The first group of calculations, from records 
009 to 067, are based on estimates of spectral density a t  frequencies of O(O.1) 2.5 
c/s; the second group are based on estimates at more closely spaced intervals 
from O(0.05) 2.5 c/s (not available for records 009 to 028). It will be seen that the 
agreement between the observed and calculated values of K~ is within 5 % except 
in the case of two records, 028 and 087 (for which there seems no obvious explana- 
tion). There is only a slight difference, of the order of 1 yo, in record 067, between 
the values of calculated from the less closely spaced, and from the more closely 
spaced, spectral estimates. 

In  the fourth column of table 1 are listed the values of the skewness coefficient 
A,, as observed by Kinsman.? It will be seen at once that all except three of the 
observations are positive, as predicted, and of the three negative values, two are 
very small. 

In  the next column of table 1 are shown the values of L calculated from 
equation (3.20), that is to say the theoretical values of A, if the spectrum were 
uni-directional. (The two theoretical estimates for record 067, which differ by 
about 12%, suggest that the estimates derived from the more closely spaced 
spectral estimates are significantly more accurate.) The ratio A,/L is shown in 
the sixth column of table 1. According to equation (3.24) this ratio should lie 
between 0.44 and 1.01. Out of the total of 24 records it will be seen that 18 satisfy 
the inequality A,lL < 1-01 and that 15 satisfy A,/L 2 0.44. 

In  the last column of table 1 are shown the observed values of A, as found by 

* Kinsman tabulates P ( f )  where f = frequency in cjs. He uses a slightly different 

t In table 5.10 of Kinsman (1960) it is $A3 that is tabulated. 
definition of the power spectrum, so that P d f  = $F(a)da .  
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Kinsman (who tabulates +A4). Although some of these values are of order A& as 
might be expected, there are several values of nearly 0-4, which is unexpectedly 
high. Part of the variability in A, may no doubt be attributed to the finite size 
of the sample; but probably it reflects also the sensitivity of the integrals to the 
high-frequency end of the spectrum, which is not includedin the measured values. 

Record 

009 
010 
011 
012 
017 
018 
027 
038 
067 

067 
068 
069 
070 
075 
076 
081 
082 
083 
084 
085 
086 
087 
088 
093 
094 

K~ (cm2) 
& 
obs. 

8.45 
8.94 

10.82 
8.45 
3.30 
4-12 
3.87 
3.13 
4.99 

4.99 
5.57 
7.71 
7.23 
9.65 
7.37 
3.46 
3.64 
7.57 
6.64 
7.91 
7.72 
3.45 
4,06 
9.34 

11.30 

th. 

8.39 
8.94 

10.77 
8.46 
3.24 
4.09 
3.83 
3.77 
4.95 

5.02 
5.60 
7.71 
7.23 
9-62 
7.37 
3.40 
3.59 
7.37 
6.59 
7.77 
7.71 
7.45 
4.05 
9.33 

11.29 

A3 

obs. 

0.344 
0.286 
0.192 
0.364 
0.350 
0.438 
0.316 
0.356 
0.164 

0.164 
0.174 
0.138 
0.054 
0.202 
0.184 
0.058 
0.068 

- 0.004 
0.088 

- 0.010 
0.022 
0.010 

- 0.092 
0.288 
0,272 

L 

0.284 
0.293 
0.234 
0.273 
0.274 
0.257 
0.264 
0.204 
0.282 

0.258 
0.260 
0.248 
0.243 
0.249 
0.240 
0.169 
0.196 
0.192 
0.2 17 
0.203 
0.223 
0.068 
0.177 
0.336 
0-363 

&/L A4 
obs. 

1-21 0.092 
0.98 -0.030 
0.82 -0.250 
1.33 0.202 
1.28 0.100 
1.70 0.366 
1.20 -0.392 
1.75 0.118 
0.58 -0,014 

0.64 -0.014 
0.67 0.050 
0.56 0.414 
0.22 0.090 
0.81 0.086 
0.77 -0'062 
0.34 -0.130 
0.35 -0'232 

-0.02 -0.202 
0.41 0.048 

-0.05 -0,448 
0.10 -0.156 
0.15 0.330 

- 0.52 0.300 
0.86 0.432 
0.75 0.046 

TABLE 1. Comparison of observed and theoretical coefficients 
of distributions of surface elevation. 

The observed distributions p(5 )  themselves have been compared by Kinsman 
(1960) with the expressions 

(see figures A111 2.01-2.24 of Kinsman 1960) and it is found that the observa- 
tions are an appreciably better fit to (4.1) than to the corresponding Gaussian 
distributions, from which (4.1) differs by terms of order A,. Equation (4.1) 
differs from the theoretical distribution (2.20) by the term 

[exp ( - + 5 2 / ~ ~ ) ]  ( 2 m 2 ) - g  &A: H6 (4.2) 

which is of order A:. Since the maximum value of 
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is equal to 0-083 at 5 = 0, and since the maximum value of A,, from table 1, is 
0.438 (A: = 0-192) it will be seen that the terms (4.2) are in fact rather small. 
It is found that they make no appreciable difference to the theoretical distribu- 
tions (for the values of A, observed) and that the agreement with observation 
is not significantly improved. Equation (2.20) is indeed a significant improve- 
ment over the Gaussian distribution, but this is brought about mainly by the 
term in A, which is already included in (4.1). 

5. Joint distribution of two non-linear variables 
The joint distribution of two or more variables of type similar to (2.1) may be 

investigated in an exactly similar way. In  the present section we shall evaluate 
the distribution for two such variables. This will enable us, in the following 
section, to evaluate the joint distribution of the two components of surface slope 
in a random sea. 

Consider two variables <,'I defined by 

(5.1) 
5 = a i ~ i + a i j & ~ j + a i j k ~ i f ; j ~ k +  *..,) 
7 = Pi t i+Pi j~ i5+Pi j k~ i~ j~k+ ...,I 

where ai, aij, ... and Pi, Pij, ... are constants and the ti are defined as before. 
We denote by A,  and B, the terms aij...l and /Iii ...m which contain respectively 
p and q suffices, and by (AP B, . . . ) the irreducible part of the mean product 

___. 

(Aptiltjl * * a  &,I (Bq<i,<j, ... [ m 2 )  a * * -  

For example 

( 5 . 2 )  I (AIBl) = aiPiK, (A,"BT) = 0 (n+m > 2 ) ;  

(AlBlB,) = 2ai/3jPijK5, (A1B3) = 3aiPijjK13, 
(A2,B2) = 2aiajpijqy. 

The the joint moments of 5 and 7 may be written down by inspection. Thus 

P11 = G = I: [(A,B,) + (A,) @,)I, 
P ,  Q 

P21= fi = [ (A ,  A&) i- ( A p A q )  (B,) + 2(A,) (Aq&) + ( A p )  (A,) (&)I7 
P, P 

and in general 
L G ~  m = 5- = x c(w)m(i1,j l ;  i 2 9 j 2 ;  -..I, (5.3) 

8 . P . .  ..,s 

where ID denotes a grouping of A,, ..., B,, ._. into unordered sets containing 
il of A,  and j ,  of Bq; i, of A ,  and j ,  of Bq; etc., with (il+i,+ ...) = n and 
(jl+jz+ ...) = m; and a is the number of distinct ways of choosing such a 
grouping. 

If p(5 ,  7) denotes the joint density of 6 and 7 the moment-generating function 
for the joint distribution is defined by 
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and the cumulant-generating function is defined by 

where in the summation i and j take all pairs of non-negative integral values 
except (i, j) = ( 0 , O ) .  Thus we have 

and by equating coefficients of tms?t in this expression we have 

y,, = EC(& j,; i,, 3.2; . . -1 Ki*,jl Ki2 , j ,  * .  ., 
where C(i,, j,; i,, j,; . . .) is the same constant as in (5.3). Hence we have simply 

In  particular, K ~ , ,  = K ~ ,  which is given as far as the terms in V 3  by equation (2.13). 
Similarly 

. (5.5) 

and 
we have 

exp [ - i( fu +flu’) - +(u2 + 2h,,uu’ + u’,)] 
1 p ( [  7) = 

..) 

x exp[Qi3{h30u3+3h21u2u’+ ...>+ ...I dudu’. (5.7) 
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Now 

exp [ - i(fu +f’u’) - t(u2 + 2puu’ + u ‘ ~ ) ]  (iu)” (iu’)”dudu‘ 

= (1 - P2)+ Hmdf ,  f ’ ;  P )  exp [ - $(f2 - 2pff’ +f’”/(l -p2)1 
say, where H,,, is a two-dimensional analogue of the Hermite polynomial. Thus 

Hoo = 1, 

HlO = ( f - P f ’ ) / ( l  - P 2 ) 4  

In  the first approximation, when terms of order Vh are neglected, 

P ( L  7) = ~ 2 n ( K 2 o K o ,  - K ; l ) k } - l  exp [ - *(f2 - Wf’ +f’”/P -P2)1, 
where f = < / K $ ~ ,  f ’  = 7 / ~ i ~  and 

This is the familiar Gaussian bivariate distribution. 

mean of the distribution is shifted to 

Kzo = aimi, Ko2 = pipi, K l l  = atpi. 

In  the second approximation, taking into account V4 but neglecting V ,  the 

( E  5) = ( K 1 0 ,  K01)  

[1 + Q ( A 3 0 H 3 0 + 3 A 2 1 H 2 1 +  ... 11 
introducing various kinds of skewness, specified by the parameters A30, AZ1, A,, 
and Ao3. 

and the abscissa is multipied by the factor 

6. Application to the distribution of surface slopes 

tion of the two components of slope of a random sea surface. 

differentiation with respect to x and y respectively we have 

We shall now apply the results of the last section to evaluate the joint distribu- 

Suppose that the surface elevation is given by equation (2.1). Then on partial 
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where, if (ui, vi) denote the components of the wave-number ki, we have 

pi = aiui, yi = aiui. 

Using the form of ai as given by equation (3.3) we see that pi and yi, when 
expressed as vectors, have the form 

Similarly from (3.9) we see that pij, when expressed as a matrix, has the form 

where 
(u1 a'vfl, N f l  - u1 all) 

(ui\7 ~ 2 ~ 7 ,  ~ + i  - ui a ~ ,  1) 

. . * ( U l a N + l ,  2N - U'V%, AJ) 

(UN K ~ N ,  2.v - UN UN, N )  

M = (  i 
. . . 

( y i j )  has an exactly similar form, except that vi replaces ui. 
Let C, denote the term yi j  .., 12 which contains just r suffices. We see now that 

the results of $ 6  are applicable to the two non-linear variables a</ax, a</ay 
provided that we replace A,, B, by B,, C,, respectively. In  particular we have 
for the first few cumulants of the joint distribution (retaining only the lowest- 
order terms) the following: for the second-order cumulants 

1 K ~ , ,  = (B2,) = uf& = 

K~~ = (B,Cl) = uiviT = uvE(k)dk, ss i (6.5) 

n n  I 

I K , , ~  = (C!) = vt& = J J v2E(k)dk. 

Each of these is proportional to E ( k )  (or V ) .  In  the expressions for the third- 
order cumulants K ~ ~ ,  K ~ ~ ,  I C ~ ~ ,  K , , ~  it will be seen from (6.2) and (6.3) that all the 
leading terms vanish identically, 

(B:B2) = (B2,C2) = (C2,B2) = (CZ,C2) = 0. 

Hence in the joint distribution of the surface slopes, the third-order cumulants 
are of order V 3  at least. The terms of next lowest order are 

} (6.6) 
~ 3 0  = 3(B;B4) + 6 ( 4 & B 3 ) ,  

K21 = (B2,C4) + 2(B1B,C3) + 2(B1B3C2) + 2(B1B4C1) f 2 ( B 2 B 3 C 1 ) 7  

with similar expressions for /c12 and K, ,~ .  

If the distribution of slopes were symmetrical about the mean, then clearly 
all cumulants of odd order, such as the third-order cumulants, would necessarily 
vanish identically. This would certainly follow if, for example, it  were possible 
to reverse the direction of time (so that forward slopes became rear slopes, and 
vice versa) without altering the statistics of the surface. However, we know in 
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fact that the time cannot be reversed, even for free, undamped waves, for it has 
been shown that there exists a slow transfer of energy from one part of the 
spectrum to another (Phillips 1960; Hasselmann 1960). This transfer is repre- 
sented by certain terms of the third-order which occur in A ,  and hence in B3 
and C3.* Since either B3 or C3 occur in (6.6) we expect that the third-order cumu- 
lants are indeed of order V3.  

Similarly from (5 .5)  we have for the leading terms in the cumulants of fourth 
order 

(6 .7 )  1 ~ 4 0  = 4(B!B3) + 6(B2,B2,), 

K31 = (B!G) + 3(BlBiCl), 
~ 2 2  = (B2,C:) + 2(B2,CzC3) + 4(B1B2C;C2) + 2(B1B3C:) + (BiC2,), 

etc. These also are of order V3. 

It follows that the coefficients of skewness 

= K30/(K20)' ,  = K 2 1 / K 2 0 K i 2 ,  etc., 

are each of order 118 in general, and that the coefficients of kurtosis 

are each of order V .  
It should be emphasized that the present model of the sea surface is a model 

of 'free' waves, in which not only is the viscous damping neglected but it is also 
assumed that the stresses at the free surface are identically zero. On the other 
hand, both the viscosity, and also the stresses due to the action of the atmosphere 
on the surface, may be expected to produce some asymmetry in the wave profile. 
Since for free waves the skewness is theoretically of such a high order, 
N ( K ~ ~  + K ~ ~ ) # ,  the actual skewness of sea waves may be a rather sensitive in- 
dicator of energy transfer to the water, or dissipation of energy in the medium. 

'40 = K40/K&, &31 = K31/K20K12,  # etc., 

7. Comparison with observation 
It follows that inany comparisonofthe theoreticalresultswithobservation, some 

consideration must be given to whether the conditions of the theory (i.e. free, 
undamped surface waves) are actually satisfied. If there is any appreciable 
transfer of energy from the atmosphere to the sea surface, or if there is a con- 
siderable contribution to the slope distribution from the very short waves, 
which are the most highly damped, then the free-wave model cannot be expected 
to apply. 

In  model experiments, Cox (1958) has shown that in winds of between 3 and 
12m/sec a large part of the contribution to the mean square slope (observed 
optically) is associated with frequencies above lOc/s, and hence with waves that 
are influenced predominantly by surface tension.? If the analysis of the preceding 
section were modified so as to include the effect of surface tension, it would still 
be found that the third-order cumulants were of fourth order in the wave 
amplitudes. On the other hand it is unlikely that, even with surface tension 

* If  the spectrum is one-dimensional, these terms vanish. 
t The frequency of waves having the minimum phase-velocity is about 11 c/s. 
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included, the perturbation analysis of 3 5 would apply in such a situation, for 
the following reasons. 

First, as the wavelength decreases, the short waves become increasingly 
influenced by viscosity, the time-constant being equal to (2vE2)-l or about 
0*71h2 where his the wavelengthin cm (see Lamb 1932, 9 348). In§ 5 this damping 
was entirely neglected. 

Secondly, it  is unlikely that a linear first approximation is appropriate when 
the wavelengths and time-constants of the short waves are small compared with 
the orbital displacements and the periods of the longer waves. It is known also 
that there is a direct transfer of energy to capillary waves from the steep crests 
of the gravity waves (Longuet-Higgins 1963), which can hardly be described in 
terms of the linear perturbation scheme. 

Thirdly, the direct action of the airflow over the water surface, which is 
perhaps most important at  high frequencies, has been neglected. 

Hence the conclusions of 8 5 cannot be expected to apply to the observed slope 
distribution, certainly if the wind exceeds 3.18 mlsec and probably if it  exceeds 
the minimum phase-velocity of 19cm/sec. An exception may occur in the 
presence of oil slicks, which are known to remove the energy in the highest 
wave-numbers. 

In  the measurements of surface slope made by Cox & Munk (1956), the local 
wind-speed ranged from 72 to 1380 cmlsec. Nevertheless, using the data given in 
table 1 of Cox & Munk’s paper we have calculated the coefficients of skewness 
in terms of the quantities defined in their paper, that is (if the x-axis is taken in 
the direction of the wind) : 

Also 

(7.1) 

( 7 . 2 )  

A plot of A,, and A,, against ( K ~ , +  K , ~ ) *  is shown in figure 2 (u) and (b ) ,  for those 
cases when the sea surface was free of slicks. 

From figure 2(a )  it does appear that A,, is approximately proportional to 
(K,,+K,,)%, as predicted. However, since the order of magnitude of A,, is 
about twenty times that of ( K ~ ,  + K,,)$ i t  appears more likely that the theory does 
not really apply to these observations. 

On the other hand, Cox & Munk observed that in the presence of oil slicks 
the coefficients of skewness were very greatly reduced, and were in fact so 
small as not to be measurable by their technique. Though not conclusive, this 
observation is certainly consistent with the theoretical result. 

8. Conclusions 
We have rederived the statistical distribution of weakly non-linear variables 

of the type given by equation (2.1) or equations (5.1). The distribution of such 
quantities is shown to be Gaussian in the first approximation, and in successively 
higher approximations to be given by Edgeworth’s form of a Gram-Charlier 
series, as in equations (2.20) and (5.9), respectively. These series differ from the 
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series used, for example, by Kinsman and by Cox & Munk as empirical fits to 
observed data, but the differences occur only in the third and higher approxi- 
mations; they are practically negligible in the cases considered. 

The coefficients in the distribution depend essentially on the cumulants of 
the original variables, which can be calculated simply in terms of the constants 
in (2.1) or (5.1). If one assumes that the sea surface consists of free, undamped 
waves then it can be shown that the skewness of the surface elevation is always 
positive and lies between the two bounds (3.24). This agrees, for the most part, 
with Kinsman’s observations. The skewness increases proportionally to the 
R.M.S. surface slope s. On the other hand the skewness of the slope distribution 
is of a higher order and increases proportionally to s3. While this prediction is 
consistent with the observations of Cox & Munk, nevertheless, if the local wind 
is appreciable the skewness may be largely affected by energy transfer from air 
to water, and by ViSCOUS dissipation. 

I am indebted to Dr K. Hasselmann and Dr C. S. Cox for valuable comments 
on a first draft of this paper, and to Mr C. L. Gulliver and Mrs W. Wilson for 
assistance with the calculations for table 1 and the diagrams. 
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CORRIGENDUM 

‘ On the sensitivity of heat transfer in the stagnation-point boundary layer to 
free-stream vorticity’, by S. P. SUTERA, P. I?. MAEDER and J. KESTIN, 
J .  Fluid Mech. 16, 1963, pp. 497-520. 

(i) In  the summary on page 497, replace ‘disturbed’ by ‘distributed’. 
(ii) Page 498, line 15. Insert the word ‘oscillating’ after ‘harmonically’. 
(iii) Page 501, equation (6a).  Insert 2 to make right-hand side read as 

+ax. 

(iv) Page 508, figure 1. The inner ordinate scale should be given the 
additional label q5yl), and the lowest of the three curves should be 
labelled instead of ${l). 

(v) Page 512, 11 lines up. Reverse the inequality signs so that it reads as 

2.4 > 7 > 0.9. 

(vi) Page 516, figure 8. Replace ‘wO7 by ‘6’. 


